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SUMMARY 
The governing equations required to analyse the linear (viscous) stability of low-speed reacting flows are 
derived and a solution method based on initial value problems is described. The algorithm accurately 
reproduces the neutral stability curve for a non-reacting viscous shear layer, thus providing partial 
validation. The results for premixed and non-premixed flames in planar shear layers are presented and 
discussed. 
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1. INTRODUCTION 

In the past, several researchers have derived equations to study the linear stability of reacting 
flows to imposed small perturbations. Kimura' performed a stability analysis, which was later 
followed by Grant and Jones' to understand the flickering of a candle. Buckmaster and Peters3 
suggested improvements to account for gravity effects on the mean flow field. Trouve et aL4 
studied the linear stability of a premixed flame in a ramjet combustor. Mahalingam et aL5 showed 
that inclusion of chemical reaction for the mean flow is crucial, but its neglect in the disturbance 
equations is a good first approximation. Jackson and Grosch6 studied the stability of a super- 
sonic reacting shear layer. In related works, variable density shear layer studies have been 
reported by Maslowe and Kelly' and Koochesfahani and Frieler.* In all these cases, the analyses 
have been inviscid. In typical flames, the local Reynolds number may be reduced significantly in 
the vicinity of reaction zones; hence, viscous effects are likely to be significant. 

In the present paper, the necessary framework to investigate the effects of viscosity is developed 
in Section 2. To simplify the analysis and discussion of the solution procedure, constant 
viscosity is assumed. However, the technique is readily extended to include viscosity variation 
with temperature, as demonstrated in Section 4. The numerical procedure is described in Section 
3. Asymptotic solutions are derived, and a method based on 'shooting' is discussed to solve the 
eigenvalue problem. A pseudo-orthogonalization procedure designed to maintain linear indepen- 
dence of the solutions during the integration process is also described. The method of contour 
integration is used to isolate multiple modes and simplify the search for eigenvalues. The results 
and conclusions are discussed in Sections 4 and 5, respectively. A comparison of the calculated 
neutral curve with the past results for a non-reacting shear layer provides partial validation of the 
proposed numerical method. High Reynolds number results obtained for premixed and non- 
premixed flames in shear layers are consistent with past inviscid results, providing further 
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validation of the method. Finally, the assumption of constant viscosity is relaxed and the 
numerical method is used to obtain the neutral curve for a non-premixed flame in a shear layer in 
which viscosity varies with temperature. The appropriate equations are summarized in 
Appendix A. 

2. VISCOUS STABILITY EQUATIONS 

The problem considered is premixed and non-premixed flames in two-dimensional planar shear 
layers. All flow variables are expressed as the sum of a mean and a disturbance component. Thus, 

(1) h(x, y, t)=h(y)+h'(x, y, t ) ,  

where h(x ,  y, t)  is a generic flow variable that is a function of position and time. The overbars and 
primes indicate the mean and disturbance components, respectively. The predominant flow 
direction is assumed to be parallel to the x-axis. The parallel flow assumption is invoked. Thus, 
his assumed to vary only with the cross-stream co-ordinate y. Since the focus is on low-speed 
flows, it is appropriate to use the low Mach number equations used by McMurtry et aL9 and 
Mahalingam et al." In subsequent sections, all dependent variables are dimensionless and are the 
zeroth- or first-order coefficients in an expansion in the square of the Mach number. The 
decomposition in equation (1) is substituted into the governing continuity, momentum and 
energy equations. The equations governing disturbance quantities are linearized by neglecting the 
products of disturbances. It is assumed that the terms corresponding to the reaction rate in the 
disturbance equations are small, except for their influence on the mean flow. Inviscid results of 
Mahalingam et al.' justify this approximation. 

It is presumed that any general disturbance can be constructed by a proper superposition of 
wave-like disturbances. Thus, 

~ ( x ,  y, t )  = K(y) exp [i(ax - ~ t ) ]  (2) 
Here a is the complex streamwise wavenumber, /? the given temporal frequency, and i is defined 
by i = J( - 1). The quantity L(y) is the eigenfunction. Amplified disturbances are obtained when 
ai, the imaginary part of a, is negative. These grow exponentially with a growth rate -ai at 
a phase velocity /3/ar. Substituting equation (2) in the disturbance equations, the following set of 
homogeneous equations are obtained. These are the continuity, x and y momentum, and energy 
equations, respectively: (In what follows in the rest of this paper, a prime indicates differentiation 
with respect to y.) 

(3) 

(4) 

i j(aU - p )  + Cp' + p( C' + Cia) =0, 

- ippii + po' U' + pUiaii= - i a j  + - (ii" - a2u" + iaii - 3  riiia), P 
Re 

where ti is defined as ii=iaii+C'. The symbols U ,  p and T represent the mean streamwise 
velocity, density and temperature, respectively. The quantities c,u", 0' and f represent the density, 
x and y velocity components, and the temperature eigenfunctions, respectively. The symbols p, 
Re, Pr, k and c ,  represent the dynamic viscosity, Reynolds number, Prandtl number, thermal 
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conductivity and specific heat, respectively. Equations (3H6) represent a system of six first-order 
differential equations, requiring six boundary conditions. 

For the purposes of numerical solution, equations (3H6) are manipulated as follows. It is 
convenient to define the complex phase speed as 

B C3-. (7) a 

Using the ideal gas equation of state, the density disturbance is eliminated from the continuity 
equation (3). The resulting equation is rewritten so that the highest derivative term appears on the 
left-hand side, yielding 

F P‘ 6’ = -iaG+ia - ( U  -c)-- 6, 
T P 

Next, the pressure eigenfunction j is eliminated from equations (4) and (5). Thus, 

+ a2G‘ -ia3fi+ iaij”. (9) 
Since v“‘ appears on the right-hand side of equation (9), equation (8) is differentiated once (this 
increases the overall order of the equation) and written as - 

T ? T‘ - p ’ i j ’ + ~ p “  p’2 

T T T 2  P P 
+? 6. 6” = -iaG’ + ia - U’ + ia - ( U  2 c)-ia - T(  U - c) - 

Finally, equation (6) is rewritten as 

Note that equations (9H11) represent a system of seven first-order differential equations. Also, for 
constant density flows, p, Tare constants, and ?=O. Thus, equation (1 1) drops out. The resulting 
equations reduce to the classical fourth-order Orr-Sommerfeld equation for incompressible flow. 
The only mean flow information required in this limit is the velocity profile. 

3. NUMERICAL SOLUTION PROCEDURE 

Drazin and Reid” provide a comprehensive discussion of the various numerical methods used to 
solve the viscous stability equations. The methods are based on either an initial value problem or 
a boundary value problem method. The former methods are computationally less demanding in 
terms of computer memory and CPU time, and are flexible in that they adjust to the local 
character of the solution. However, they can be sensitive to the initial guess of the eigenvalue. The 
latter methods are based on reducing the system of differential equations to algebraic equations, 
using a finite difference or spectral discretization. A solution to the generalized eigenvalue 
problem that arises provides the required eigenvalues. As discussed by Malik,12 these methods 
typically strain the resources of the computer. 

In this paper, the eigenvalue problem described by equations (9H11) is solved by the ‘shooting’ 
method for initial value problems. Profile shapes for the mean velocity and temperature are 
prescribed. In the absence of analytical solutions for the laminar reacting flow problem, the 
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profiles are represented by analytical expressions that typify flames in shear layers. For specified 
Re, and a guessed value of a, the equations are integrated from y = co to y = - co. The solutions 
are matched with the asymptotic solution at y =  - co, by suitably adjusting the eigenvalue a. 

3.1. Asymptotic solutions 

In this subsection, solutions to equations (9H11) for y + co and y + - 00 are developed, by 
noting that the mean flow quantities attain constant values and their gradients vanish in the far 
field. The subscript 0 is used for the constant farstream valuesvof the mean flow variables. From 
equation (1 l), it is clear that in the asymptotic limit, temperature fluctuations decouple from the 
velocity fluctuations, since T’ = 0. Defining 

RePr 
w2 = a’ +- poia(Uo -c), 

(k/c , )  
the solution to ? may be written as - 

T= exp( & oy). (13) 
Substituting for li and its higher derivatives from equation (3) into equation (9) and dropping 
terms involving me’an flow gradients, 

where y is defined by 

Re 
P 

72 =a2 +-poia ( U ,  -c). 

The temperature fluctuations act as a forcing term in this fourth-order inhomogeneous differen- 
tial equation. There are two possible cases: 

(a) P r = l .  In this case, w2=yz. The homogeneous solutions are ij=exp(fay) and 

(b) Pr# 1. In this case, w2#y2 .  The homogeneous solutions are given by ij=exp(fay) and 
v’= exp( & my), whereas the particular solution is 0. 

v’=exp( +yy). The particular solution is given by 

Only the Pr= 1 case is considered in this paper. 

3.2. Numerical integration 

The numerical solution procedure involves integration of equations (9H11) by a shooting 
method using an eighth-order Runge-Kutta-Fehlberg algorithm, with a fixed step size. These 
equations are written as a system of seven coupled first-order differential equations. The vector of 
unknowns is 

The principal elements are given by the vector (ti, I?, fjT. As y, approaches cc (subscript I stands 
for initial value), three linearly independent solutions are used to construct the principal vector as 

(ii, 5, f, 3, ii”, ij’, T r y .  
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follows: 

where B and D are unknown linear combination constants. The three solutions are independently 
integrated to large negative yF (subscript F for final integration station). The subscripts a, b and 
c will be used to indicate these three solution values at yF. Thus, for instance, 

f ( y ~ )  = Fa + B f b  + D fc . (18) 
Similar expressions may be written for the other variables. At the final station, solutions for v’ and 
f must have the asymptotic form: 

6 = c 1 exp(@yF) + CZ exp( - + c3 exp (my F) + c4 exp( - a y  F), (19) 

f=c, exp(wyF)+ Cgexp(-wyF). (20) 

By differentiating equation (20) once and equation (19) thrice, and making use of equation (lo), six 
independent equations can be obtained for the six coefficients appearing in equations (19) and 
(20). Expressions for C2, C4 and c6 are important for the rest of this discussion and are given 
below: 

wherein computed solutions of the form given by equation (18) should be used. Equations (19) 
and (20) require Cz = C4 = c6 =O for finite solutions. Two of them can be made zero (here C4 and 
c6 were chosen) by appropriate choice of B and D at the final station. The result is 

where H is defined as 

(26) 
- (Vo - 4 ( f,, - o f t ) *  H ( G ,  6, T )  = 6”- wG‘ - ia6’.+ iam7-- 

T O  

The third condition (i.e. Cz =0) is satisfied iteratively by repeated integrations with suitably 
adjusted values of the eigenvalue a. 

3.3. Pseudo-orthogonalization procedure 

During the integration process, there is a tendency for the initially linearly independent 
solutions given by equation (17) to become linearly dependent. This will make it impossible to 
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match the linearly independent solutions at the other boundary. This problem becomes more 
severe at larger Reynolds numbers. Furthermore, the solutions undergo large amplification 
during the integration process (see MonkewitzI3). Conventional Gram-Schmidt orthogonaliz- 
ation scheme will destroy the analytic dependence of the solutions on the initial conditions and 
parameters, making it difficult to iterate for the eigenvalue by repeated 'shooting'. A pseudo- 
orthognalization procedure is used both to preserve the linear independence of solution vectors 
and to maintain the analytic dependence of the solution on the initial conditions and parameters 
by controlling the magnitude of the solutions. This is based on the generalized method described 
by M~nkewitz. '~ He was able to use this method successfully to solve the classical 
Orr-Sommerfeld problem. 

Let a, b and c represent three complex solution vectors. Inner products and norms are defined 
by using the first two components of the vector. Thus, a pseudo-scalar product is defined as 

(a, b)-albl+a2bz, (27) 

(28) 

and the associated pseudo-norm as 

I a I = J(a, a). 
Since this particular choice does not involve complex conjugates, it guarantees that the final 
solution is analytically dependent on the initial conditions and parameters, thereby permitting its 
use in an iterative scheme to solve for the eigenvalue. The pseudo-orthogonalization steps 
(applied at each step during the integration) may be summarized as 

- b  - A  

b=- a' = a  - (a, b)b, 
Ibl' 

A -  

C'=C--(C, b)b, 

;=a' -(a1, 6)6. (31) 

Note that the pseudo-norm could be zero for a non-zero vector, creating a potential problem in 
the pseudo-orthogonalization steps described. Monkewitz' suggests remedies, including chang- 
ing integration step size, or even completely skipping the pseudo-orthogonalization step at that 
point during the integration process. It was found that no such remedial action was required for 
the problems investigated in this paper. 

The eigenvalue was obtained by an iterative procedure involving linear (when only results from 
two integrations are available) and quadratic (when three results are available) extrapolation, as 
described by Monkewitz.' In some instances, the eigenfunctions may be of value. For example, 
the eigenfunctions may be used in a dire& numerical simulation to excite the flow at the most 
amplified frequency as in Mahalingam et d5 Once the eigenvalue is obtained, the eigenfunction 
may be reconstructed as follows. Let the subscript i represent the current integration station ( i=O 
at the first and i=  N at the final station). The desired solution at the final station is a linear 
combination expressed as 

ON = i N  + ~ N B N  +6N DN.  (32) 
The procedure used to compute BN and DN was described earlier in this section. Using the 
definitions for the pseudo-orthogonalized vectors, equation (32) may be written as 

@N=aN + bNBN- 1 +cNDN- 1 ,  (33) 
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where the constants BN- and DN- are obtained as 

The above procedure is repeated for i =  N, N- 1, . . . , 0. During the forward integration, all the 
required inner products in equations (34) and (35) are saved. 

3.4. Method of contour integration 

A problem in obtaining growth rate curves is the existence of more than one eigenvalue, a, for 
a fixed Reynolds number and frequency, B. Several modes may exist; for instance, there may be 
symmetric and anti-symmetric modes. The eigenvalues corresponding to these may lie close to 
each other in the a-plane. Thus, the iteration scheme could converge to either mode. There are 
also eigenvalues corresponding to higher modes (with large number of zero-crossings of the 
eigenfunction). This is especially true for damped and slightly amplified modes. The method of 
contour integration (see Lessen et aZ.14) is used to find the number of eigenvalues within a closed 
contour in the a-plane. The equation used to solve for the eigenvalue is 

cz (a) = 0. (36) 
For a prescribed closed contour r in the u-plane, the number of net multiples of 272 phase changes 
in the C2 plane gives the number of zeros of equation (36). This is a consequence of the Cauchy 
integral theorem and the assumption that C2 is an analytic function of a with no poles in r. The 
points in the a-plane at which the C2 contour comes closest to the origin give good estimates of 
the eigenvalues. 

4. RESULTS 

Analytical expressions representative of premixed and non-premixed flames, for the mean flow 
(mean temperature and velocity) are assumed. Both cold and reacting flows involving large 
changes in temperature are examined. Figure 1 shows the neutral curve for the following mean, 
cold-flow profile: 

where U o  and L are the velocity and length scales, respectively. This result was obtained from 
a temporal calculation and was primarily used to validate the numerical method. The agreement 
with Betchov and Szewc~yk's'~ result is excellent. The curve of neutral stability is the same 
whether the analysis is temporal or spatial (see Betchov and Criminale16). All further cases in this 
section are based on spatial analysis. 

4.1. PremixedJlames 

The first configuration considered is a premixed flame in a plane shear layer. Figure 2 shows 
neutral stability curves for cold flow as well as a shear layer with a temperature distribution 
typical of a premixed flame, with the velocity profile of the cold case. The following expressions 
were assumed for the profiles of mean velocity, U, and density, p. These are similar to those used 
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Figure 1. Neutral stability curve for U = U, tanh (y/L) (cold, non-reacting): (-) computed; (0) results from 
Reference 15 
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Figure 2. Neutral stability curve for premixed flame in a shear layer; U = 1  +tanh(y); p = 3 + 2  tanh(y): (-) Cold; 
(-----) T ratio = 5.0 

by Trouve et aL4 in their inviscid analysis: 

U =  1 +05 tanh ( y ) ,  p = 3 + 2  tanh (y). 

The widths of the velocity and temperature profiles are the same. For planar flows, the necessary 
condition for the existence of instability is that pU' vanish somewhere in the domain. For the 
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profiles chosen (heated case), this occurs at approximately y = 0.275 and the corresponding fluid 
velocity at that point is 1.13. The phase speed corresponding to the neutral disturbance ap- 
proaches this value at large Re, consistent with inviscid theory. It is interesting to note that the 
neutral curve shifts outwards to higher frequencies, relative to the cold case. This result is 
consistent with the inviscid results for axisymmetric premixed flames, where the peak amplifica- 
tion rates as well as the frequency corresponding to the neutral stability point shift to higher 
frequencies (see Mahalingam et d5). Frequency-Reynolds number combinations lying inside the 
neutral curve represent amplified disturbances, whereas those above the curve are damped. The 
critical Reynolds number is zero for both the cold and reacting flows. This is an important result, 
for it demonstrates that all the disturbances are amplified if the correct frequency is chosen. 

4.2. Non-premixed flames 

A non-premixed flame in a plane shear layer is now considered. The velocity and density 
profiles chosen are representative of such a configuration. Mean flow profiles of the following 
form were investigated: 

U =  1 +0.5 tanh(y), P = 1 - (1 - Pmin)  ~ X P (  - 4 ~  '), (39) 
where pmin is the minimum density of the mean flow (the maximum being unity). For the case in 
which pmin = 1/5, the quantity pU' vanishes at approximately y = k 0.61 (corresponding U = 0.72 
and 1.27) and at y = 0 (corresponding U = 1). However, only a single mode was found with a phase 
speed approaching unity at large Reynolds numbers. (This is not inconsistent since the condition 
for the existence of unstable disturbances is not a sufficient condition.) The resulting neutral curve 
is shown in Figure 3. The neutral frequency decreases with increasing heat release. This is 
consistent in trend with the inviscid results of Mahalingam et aL5 The density profile has 
a characteristic width and its relation to the width of the velocity profile is an important 
parameter which was not investigated in detail. 
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Figure 3. Neutral stability curve for non-premixed flame in a shear layer; U = l  +tanh(y); p= 1- (1  -pmin) exp(-4y2): 
(--) Cold; (-----) T ratio = 1.5; (---) T ratio = 5.0 
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Figure 4. Effect of the Reynolds number on non-premixed flame stability. For pmin = 1/5 case of Figure 3: (a) Growth rate 

as a function of frequency; (b) phase velocity; (0 -) Re=200, (A-) Re= 30 

For the pmin= 1/5 case, the growth rate and phase velocity as functions of frequency at two 
different Reynolds numbers are shown in figures 4(a) and qb). The change in the frequency 
corresponding to the most amplified mode is small. However, the peak growth rate is reduced by 
nearly 20% at the lower Re. At high frequencies, whereas the higher Reynolds number flow is 
stable, the lower one is unstable. It is known that decreasing the Reynolds number does not 
always result in a more stable flow (Lessen and Singh”). A similar behaviour was reported in 
axisymmetric cold flows by Morris’*. He attributes it to the different behaviour of the kinetic 
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Figure 5. Neutral stability curve for non-premixed flame in a shear layer; U =  1 + tanh(yk p= 1 -(1 -pmin) exp( -4y2), 
with Tratio of 5 . 0  (-) p=constant; (-----) p = p ( T )  given by Sutherland law 

energy production and dissipation mechanisms as functions of the Reynolds number. The phase 
velocity shows weaker variation at the lower Reynolds number so that the waves are less 
dispersive. These results show the importance of the Reynolds number. Although the Reynolds 
number based on cold flow may be sufficiently high for inviscid results to be applicable, 
a substantial reduction in the Reynolds number occurs in the region of the flame, and the viscous 
theory must be applied to understand the frequency response of the flow. 

Results for non-constant viscosity 

As mentioned above, the effect of changing viscosity through the flame is expected to be 
significant in terms of its influence on the neutral stability curve. Although the equations 
including the variation of viscosity with temperature are more complicated (see Appendix A), the 
same numerical procedure described in this paper is used to solve them. Figure 5 shows the 
neutral stability curves for a non-premixed flame (pmin = 1/5 case) obtained assuming constant 
viscosity and when viscosity is allowed to vary with temperature according to Sutherland’s law 
(see Whitelg). A significant result is that, in either case, the critical Reynolds number approaches 
zerd. The Reynolds number in either case is based on the vicosity at the highest temperature in the 
flow field. 

5. CONCLUSIONS 

The equations governing the viscous stability of low-speed reacting flows has been derived. 
A ‘shooting’ method, combined with an iterative procedure has been adapted to solve the 
resulting equations. The method accurately reproduces the neutral stability curve for a planar, 
constant-density, shear layer. The neutral curve shifts outwards towards higher frequencies for 
premixed flames in shear layers. However, for non-premixed flames, the shift is towards lower 
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frequencies. These results are for a constant viscosity. The method developed in this paper is used 
to allow for a prescribed variation of viscosity with temperature. The results indicate that the 
critical Reynolds number is zero for both constant and varying viscosity cases. 
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APPENDIX 

When viscosity is allowed to vary with temperature, the following equations replace equations (9) 
and (1 l), respectively: 

PI c)C+ U!ii+- ( U  - c)ii 
P 

P 1 1 + ( u'C' + Ur'i?+- U'C) + a2iir - ia3i?+ i d '  
1u 

and 

where ji and k"/c,, represent fluctuating quantities. Since p = p ( T ) ,  the quantities p', p", etc., can be 
readily obtained. Similarly, the fluctuating quantities b, f i ' ,  etc., are related to ?.and T. Note that 
equation (10) remains unchanged. 

REFERENCES 

1. I. Kimura, 'Stability of laminar jet flames', Proc. 20th Int. Symp. on Combustion, The Combustion Institute, 

2. A. J. Grant and J. M. Jones, 'Low-frequency diffusion flame oscillations', Combust. Flame, 25, 153-160 (1975). 
3. J. Buckmaster and N. Peters, 'The infinite candle and its stability-a paradigm for flickering diffusion flames', Proc. 

4. A. Trouve, S. M. Candel and J. W. Daily, 'Linear stability of the inlet jet in a ramjet dump combustor', AIAA Paper 

Pittsburgh, 1965, pp. 1295-1300. 

22st Int. Symp. on Combustion, The Combustion Institute, Pittsburgh, 1986, pp. 1829-1836. 

NO. AIAA-88-0149. 1988. 
5. S. Mahalingam, B. J. Cantwell and J. H. Ferziger, 'Stability of low speed reacting flows', Phys. Fluids A, 3, 1533-1543 

(19911. \ -  - I  

6. T. L. Jackson and C. E. Grosch, 'Inviscid spatial stability of a compressible mixing layer. Part 2. The flame sheet 

7. S. A. Maslowe and R. E. Kelly, 'Inviscid instability of an unbounded heterogeneous shear layer', J. Fluid Mech., 48, 

8. M. M. Koochesfahani and C. E. Frieler, 'Inviscid instability characteristics of free shear layers with non-uniform 

model', J. Fluid Mech., 217, 391-420 (1990). 

4 0 5 4 1 5  (1971). 

density', AIAA Paper No. AIAA-87-0047, 1987. 



VISCOUS STABILITY EQUATIONS 74 1 

9. P. A. McMurtry, J. J. Riley and R. W. Metcalfe, ‘Effects of heat release on the large scale structure in turbulent mixing 

10. S. Mahalingam, B. J. Cantwell and J. H. Ferziger, ‘Full numerical simulation of coflowing, axisymmetric jet diffusion 

11. P. G. Drazin and W. H. Reid, Hydrodynamic Stability, Cambridge University Press, Cambridge, 1981. 
12. M. R. Malik, ‘Numerical methods for hypersonic boundary layer stability’, J. Comput. Phys., 86, 3 7 M 1 3  (1990). 
13. M. A. Monkewitz, ‘Analytic pseudoorthogonalization methods for linear two-point boundary value problems 

14. M. Lessen, S. G. Sadler and T. Y. Liu, ‘Stability of pipi Poiseuille flow’, Phys. Fluids, 11, 1404-1409 (1968). 
15. R. Betchov and A. B. Szewczyk, ‘Stability of a shear layer between parallel streams’, Phys. Fluids, 6, 1391-1396 (1963). 
16. R. Betchov and W. 9. Criminale, Stability of Parallel Flows, Applied Mathematics and Mechanics Series, Vol. 10, 

17. M. Lessen and P. J. Singh, ‘The stability of axisymmetric free shear layers’, J .  Fluid Mech., 60, 433457 (1973). 
18. P. J. Morris, ‘The spatial viscous instability of axisymmetric jets’, J. Fluid Mech., 77, 511-529 (1976). 
19. F. M. White, Viscous Flow, McGraw-Hill, New York, 1974. 

layers’, J. Fluid Mech., 199, 297-332 (1989). 

flames’, Phys. Fluids A, 2, 720-728 (1990). 

illustrated by the Orr-Sommerfield equation’, J. Appl. Math. Phys. ( Z A M P ) ,  29, 861-870 (1978). 

Academic Press, New York, 1967. 


